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Abstract

The goal of this thesis is to propose and investigate a method of predicting depth

of a laser dissection pulse in soft tissue without acquiring material properties of the

tissue target or measuring the laser output. The method proposed is similar to what

is used by laser surgical operators today, but uses regression learning to perform on-

the fly predictions in place of a skilled laser surgeon. Power of the laser and the

ablation depth were recorded for 57 samples and fed into the regression algorithm.

Data exclusion was performed using Temperature before laser action as criteria.

A linear and logarithmic model was explored using random points from the data

post-exclusion, validation RMSE ranged from 135-200 µm. A linear and logarithmic

model was explored using data points below a moving power threshold and validated

with data points above said threshold, validation RMSE ranged from 108-170 µm.

The t.test performed showed there was not a significant difference between the

linear and the logarithmic models’ goodness of fit metrics, but it did show there

was a significant difference between the model building methods (randomly selected

data points, moving power threshold). The method of building a model using lower

power levels to predict larger power levels had better goodness of fit metrics than

the method of selecting data points at random. In the future, this method could be

used to help approximate the laser settings for surgery on a procedural basis, and

allow for surgeons to perform at a higher skill level with less training.
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Chapter 1

Introduction

1.1 Motivation

Lasers are routinely used in clinical surgery as cutting instruments. The benefits

of laser surgery are manifold: lasers can simultaneously cut, sterilize, and cauterize

vessels, thus providing excellent hemostasis [1, 2, 9]. In microsurgery (also referred

to as microscopic surgery), lasers are particularly attractive because they can be

focused in tiny diameters, and their wavelength can be chosen in such a way to limit

penetration into tissue [2, 9]. In spite of these benefits, lasers remain challenging

when compared to other tools in a surgeons arsenal. Surgical laser systems present

many operational parameters (power, focusing level, pulse duration, distance from

fiber tip to tissue target, etc.) where a beam can either emitted as a free beam or

be passed through a fiber or waveguide [1, 2, 9]. Control of these many parameters

is not intuitive to the designated operator; surgeons are classically trained to cut

through tissue using scalpels, scissors, and blunt instruments using a variety of

dissection techniques, and to use their delicate sense of touch as feedback to guide

their actions. In minimally invasive procedures, where surgical lasers see operational

1
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use as a replacement for a scalpel, the issue of control is compounded by the difficulty

of deployment and operation in small spaces within the human body. As such, there

is a steep learning curve associated with performing laser surgical dissection and

resection procedures, especially in minimally invasive applications.

1.2 Scope of the thesis

In this thesis, we describe the concept of a new technology capable of automati-

cally performing surgical laser cutting based on high-level surgeon commands (for

instance, specifying the specific depth of cut desired). Our hope is that this technol-

ogy will make using surgical lasers more intuitive to use and contribute to expanding

the pool of laser surgeons. To realize this vision, we propose to combine robotic tech-

nology with new methods to model and control laser-tissue interactions: we envision

a system where surgeon commands are interpreted by a computer program and used

to synthesize a surgical action plan that is then executed by a robot.

As a first step in this investigation, this thesis focuses on the problem of finding

the laser parameters required to obtain a prescribed incision depth “on the fly,”

ie. while in the operating room. We propose to develop models based on sta-

tistical learning algorithms that describe the relation between the application of

laser parameters and the cutting depth. These models will enable us to investigate

model-based control schemes for surgical laser cutting processes.

1.3 Contributions

The contributions for these thesis are:

• Developed Bench test for these experiments and future experiments

2
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• Developed and validated Data acquisition method

• Sample tests and preparation

• Design of Experiment

• Preliminary data acquisition to validate early claims

In section 4.1, found under materials and methods, I go into more detail on the

thought process for the formulation of each of these contributions. More details on

my personal contributions can be found in Appendix B and C.

3
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Chapter 2

Fundamentals of Laser-Tissue

Interactions

Medical applications of lasers have been explored ever since the creation of the

first laser source back in 1960 [2, 7]. One of the early challenges, still subject of

scientific inquiry at present days, was to model and control the physical interactions

that occur between laser light and biological tissue in order to achieve a desired

treatment [6, 7]. This chapter provides an introduction to the physics of laser-tissue

interactions. Special emphasis will be given to laser dissection via thermal ablation,

which is the main focus of the study reported in this thesis.

4
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2.1 Laser Light

Figure 2.1: Diagram showing basic laser components for the production of laser

light. Reproduced from Atlas of CO2 Lasers [1].

The term “Laser,” an acronym for Light Amplification by Stimulated Emission of

Radiation, refers to a class of devices that produce an intense beam of highly colli-

mated, monochromatic light [1, 2]. This is accomplished via stimulation of a medium

using light that leads to an emission of a specific wavelength of radiation from said

medium. This process is also referred to as “stimulated emission”, illustrated in

Fig. 2.1. The emitted wavelength is dependent on both the medium, the stimula-

tion wavelength, and phase of the stimulation.

5
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2.1.1 Laser Beam Characterization

Free beam propagation refers to any point in time when a laser beam travels through

open space, including the times when the laser beam leaves a fiber or waveguide.

The distribution of the laser intensity profile is largely dependant on the boundary

conditions of the cavity in the laser device and the mirrors used to confine light

through it. Surgical laser systems are usually constructed in a way where the in-

tensity of the beam can be characterized in a Gaussian-shaped function whose peak

lies on the optical axis z and are described through a combination of a Gaussian

function with a generalized Laguerre Polynomial of an order l and index p, ie Ll
p.

Assuming a cylindrical reference frame (r, ϕ, z), with z denoting the beam axis, r

and ϕ being polar coordinates of a plane transverse to z, the intensity profile is

defined as [2]:

Ipl(r, ϕ, z) = I0ρ
l[Ll

p(ρ)]2 cos2(lϕ)exp(−ρ) (2.1)

where I0 is maximum intensity, and ρ = 2r2

w2(z)
. w(z) is referred to as the spot size

of the beam, or the radius at which the intensity of the beam is equal to I0/e
2 [2].

The indices, l and p are integers that determine the shape of the intensity profile

shown in Fig. 2.2.

6
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Figure 2.2: Transverse modes of Gaussian Beams for different values of l and p.

Higher values of intensity are represented with brighter shades of gray. Reproduced

from Fichera [2]

The l and p integers for most surgical laser systems are 0 and 0, as the other

shapes represented in Fig. 2.2 do not have practical uses in the field of laser surgery

yet. These beams are referred to as Gaussian beams, and their intensity distribution

can be described as [6]:

I(r, z, t) = I0exp(−
2r2

w2
0

− µaz)exp(
−8t2

τ 2
) (2.2)

Where w0 is the laser beam waist, t is the total exposure time, and τ is the pulse

duration. The optical absorption coefficient, µa, is negligible when traveling through

vacuum or non-absorbing material such as air in an operating room. Laser beam

waist is defined as the minimum radius of the laser beam when focusing reaches

its maximum as seen in Fig. 2.3. Gaussian-shaped beams present a relatively

7
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low divergence and maintain a Gaussian shape along each cross-section along the

propagation axis, z [2].

Figure 2.3: Propagation of a laser beam along optical axis z, divergence angle θ, the

spot size where the beam is most focused w0. Reproduced from Fichera [2]

One can calculate the power distribution of the laser along the target’s surface

by multiplying the intensity profile, I(r, z, t), with the matching optical absorption

coefficient, µa, for the wavelength used.

S(r, z, t) = µaI(r, z, t) (2.3)

The variable S(r, z, t) becomes important when looking at heat generation through

tissue using a heat source, in this case a laser beam. This is in anticipation of later

sections when discussing the laser tissue interactions and the physics involved.

2.1.2 Beam propagation through a fiber

Often times, surgery is conducted by delivering the laser light through flexible de-

livery system such as a laser fiber [1, 9]. In laser fiber propagation the beam travels

through a flexible, solid medium. The medium refracts the beam, changing direction

or angle of incidence within the walls of the fiber. As shown in Fig. 2.4, the angle

of incidence (shown in the figure as the “Angle of Light”) usually decreases when

8
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travelling from air into another medium.

Figure 2.4: Refraction of light entering glass. Reproduced from Hecht [3]

The main advantage of propagating a laser beam through a fiber is the ability

to direct the laser beam along the fiber with minimal power loss. This is possible

due to a particular property of light when it collides with a surface: total reflection.

When a beam of light collides with a surface, some of the energy is refracted. If

the angle between the laser beam and the surface it collided with is small enough,

most of the energy in the refracted beam is reflected. In the particular case of the

laser fiber, or the laser beam traveling through its core reflects internally when it

comes in contact with the fiber cladding, and which coalesces into multiple total

reflections inside the fiber until the beam exits [3]. In the study of fiber optics, this

is referred to as total internal reflection [3]. This allows for the fiber to guide the

laser beam along it’s path via numerous low angle reflections, where it refracts again

upon exiting the fiber tip and enters a new medium.

9
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Figure 2.5: Light guiding in a large-core step-index fiber. The confinement angle

measures the angle between guided light rays and the fiber axis; the acceptance

angle is measured in air. Reproduced from Hecht. [3].

The angle of confinement (the minimum angle where total reflection occurs) is

completely dependant on the refractive indices, ncore, of the medium the beam is

traveling through and the medium the beam collides with, nclad. In the case of

laser fibers, both the critical angle and angle of confinement depend on the n of the

internal medium and the cladding of the fiber [3].

θconfinement = cos−1
nclad

ncore

(2.4)

As long as the angle between the cladding and the beam is less than the angle of

confinement, total reflection will occur and guide the light along the fiber via total

internal reflection along the core. It is important to note that while the phenomena

is referred to as total internal reflection, there is still some small amount of energy

loss that occurs as the laser travels along the path of the fiber [3].
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Figure 2.6: Intensity of light emerging from a multimode fiber falls to about 5

percent of peak value at the edge of its acceptance angle. Reproduced from Hecht

[3]

As the beam leaves the fiber and propagates through the air, the beam diverges

out in a cone shape as seen in Fig. 2.6. The standard measure of the acceptance

angle and divergence angle is referred to as Numerical Aperture (NA).

NA =
√

(n2
0 − n2

1) = sin θ (2.5)

The spot size, wz, of the laser relates to the angle of the beam exiting the fiber

and can be roughly calculated as

wz = πr2 = π(z sin (θdivergence))
2 (2.6)

Where z is the distance from the fiber tip to the target, and θdivergence is the

divergence angle. Spot size is an important metric to consider in laser surgery and

helps determine the two dimensional power density of the laser on the tissue surface.

Eqn. 2.6 is the same equation for the area of the circular base of a cone using a radius

calculated using θdivergence and distance from the target z. Simply by moving the
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fiber tip away from the target, the surgeon can increase the spot size and decrease

the power density of the laser, which generally leads to a lower ablation depth [1].

Two dimensional power density plays a critical role in determining which laser-tissue

interaction occurs and is a factor in laser ablation depth. The importance of the

two dimensional power density is further described in section 2.2 and section 3.1.

2.1.3 Beam propagation through a Waveguide

Beam propagation through a hollow-core waveguide is very similar to beam propa-

gation through a laser fiber, with the key difference that the beam does not transmit

through a new medium before being directed by the waveguide and instead travels

through the hollow-core [4]. Similarly to a fiber, waveguides direct beams of light

through total internal reflection, in this case through a hollow cavity [4]. Waveg-

uides still allow for propagation of most of the beam via total internal reflection,

as long as the angle between the light beam and the cladding is less than the an-

gle of confinement. As noted before, presence of refraction as the beam enters a

solid medium fiber changes the angle of incidence of the beam upon entry. Because

there is no transition between media upon the beam entering the waveguide, the

angle between the fiber axis and the beam remains unchanged before total internal

reflection, illustrated in Fig. 2.7.
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Figure 2.7: Geometry of bent hollow-core waveguide demonstrating the path of a

beam through total internal reflection. Reproduced from Harrington. [4]

Similarly to laser fibers, the beam exits the waveguide in a cone shape as seen

in Fig. 2.8. The spot size of the lase, wz, and the two dimensional power density on

the tissue target surface are both dependent on the distance the beam has to travel

from the end of the waveguide to the tissue target. In waveguides, the divergence

angle can be calculated as

θdivergence =
u1mλ

2πa
(2.7)

Where θdivergence is the divergence angle, λ is the wavelength of the laser, a is

the radius of the hollow core, and u1m is a coefficient that depends on the order

number of the laser mode [5]. The relationship shown in the equation describes how

the bore radius and the wavelength of the laser affect the divergence angle of the

beam, and subsequently the two dimensional power density.
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Figure 2.8: Geometry of the beam exiting a hollow core waveguide, L1 and L2 are

measurements along the beam axis at different points, r1 and r2 are measurements

of the radius of the beam cone along different points. Reproduced from Patimisco.

[5]

Alternatively, it is more practical to calculate the output divergence angle using

the change in radius of the beam cone along the cone’s axis [5]

θdivergence ≈ tan
r2 − r1
L2 − L1

(2.8)

While this equation does not give the exact divergence angle, it is more feasible

to calculate if one is missing information for the laser.

2.2 Classification of Laser-Tissue Interactions

After having reviewed the fundamental concepts of laser light generation and prop-

agation, we are now ready to discuss the physical interactions that occur between

laser light and biological tissue.

Free beams interact with matter differently based on the angle of incidence, the

angle between the beam and the normal to the surface of the matter it collides with,

and the absorption coefficient of the matter, which describes how much of the light
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transmitting through a medium is absorbed and converted into heat. If the beam is

perfectly perpendicular with the matter and the matter does not absorb any energy

from the light beam, as is rarely the case, the beam is then transmitted through

the matter. If the beam is not perpendicular to the surface, some of the beam

reflects off the surface and the remainder refracts through the surface. Refraction

occurs when light changes the medium it is travelling through, resulting in the beam

changing direction upon passing through the new medium. Attenuation, a decrease

in the beams power, occurs when some of the energy of the beam is absorbed

during refraction or transmission. These phenomena are not isolated, more often

than not there will be some combination of reflection, attenuation, refraction, and

transmission depending on the light and material properties.

Figure 2.9: Basic interactions of laser light with matter. Here, the beam is directed

onto the surface of a block. Depending on the properties of the beam and the

material, three different interaction mechanisms may occur: (a) Transmission (b)

Attenuation (c) Reflection and Refraction. Reproduced from Fichera. [2]

In general, when a laser beam is applied to tissue, a variety of different physical

phenomena can occur. A high-level classification of these mechanisms can be made
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by considering (1) the power density of the laser beam and (2) the total duration of

laser exposure, as shown in Fig. 2.10

Figure 2.10: Taxonomy of laser-tissue interactions. Reproduced from Niemz.[6]

These interaction mechanisms have one thing in common: they all reside in a

band where energy density is between 1 and 1000 J/cm2 as seen in Fig. 2.10. An-

other interesting aspect of this classification is that it does not make any assumptions

of the characteristics of the tissue! This does not mean that tissue properties (e.g.

absorption) are not important - they are! - they will be addressed more in section

2.2. Most laser surgical systems, such as the one being used for this thesis, fall under

the classification of “Thermal Interactions”, where the power density is between 10-

106 W/cm2 and exposure time varies between a few milliseconds and up to several

seconds.
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As we should see in the following, modeling the Thermal Interactions in tissue

can be quite difficult for a multitude of reasons, the primary cause being the non-

homogeneity of structural and thermal properties of tissue and the differences in the

optical absorption of tissue in location, time, and patient [1, 2, 7, 10, 11, 12].

2.3 Thermal Interactions

Thermal interactions are characterized by the fact that vaporization via tissue tem-

perature increase contributes the most towards thermal ablation. When tissue tem-

perature reaches a certain threshold, vaporization occurs in the target which in turn

leads to the creation of an ablation crater. This vaporization causes an ejection of

tissue material from the target in the form of an ablation plume, the resulting me-

chanical forces of this eruption is referred to as Thermal Decomposition [6]. Despite

this, the governing parameter for all laser-tissue thermal interactions is Temperature,

with thermal vaporization being the primary mechanism in the creation of ablation

craters [6]. In soft tissues, the temperature threshold for vaporization is usually

around 100 C, the boiling point of water within cells, upon which vaporization can

occur [1].

2.3.1 Thermal Vaporization

Let us entertain that the general idea of a model where when a temperature threshold

is reached (100 C), vaporization can occur. How difficult would it be to calculate

the variation of temperature in a sample of tissue exposed to a laser beam? In

a closed system, change of energy dQ increases linearly. In practical applications

of laser-tissue interactions, however, there are losses of heat to take into account.

The change of energy dQ (Joules) can be defined as a function of the change of
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temperature in Kelvin ∆T , specific heat C (J/Kelvin), and mols of material m.

dQ = mC∆T (2.9)

The mechanisms of thermal transfer within the tissue are based on heat conduc-

tion, heat convection or heat radiation. Depending on the tissue and its perfusivity,

heat convection can be ignored for some tissues with low perfusion. Only in longer

exposures is the heat loss from blood flow significant [6]. Heat radiation can also

be neglected due to the moderate temperatures created in thermal interactions [6].

The conduction of heat is the primary mechanism through which heat is transferred

to adjacent tissue and contributes the highest heat loss to the target. Our starting

point is the equation of continuity which states that the temporal change in heat

content per unit volume, q̇, is determined by the divergence of the heat flow, jQ [6]:

divjQ = −q̇ (2.10)

Inserting eqn 2.10 into 2.9 leads to:

Ṫ =
1

mc
Q̇ = − 1

%c
divjq (2.11)

Where Ṫ is the change in temperature (Kelvin), %c is inversely proportional to

conductivity of heat κ, and divjq is the divergence of heat flow. The other important

piece is the diffusion equation [6]:

jQ = −κ∇T (2.12)

When combined with eqn 2.11, it yields [6]:
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Ṫ = κ∇2T (2.13)

In the absence of a phase transition or photochemical reaction, the energy ab-

sorbed via laser pulse is completely absorbed and converted into temperature [6].

Adding the heat source from the laser, represented by variable S (Joules), transforms

the previous equations to non-homogeneous equations [6].

Ṫ = − 1

%c
(divjq − S) (2.14)

Ṫ = κ∇2T +
1

%c
S (2.15)

Solving for the homogeneous portion of the conduction equation describes the

decrease in temperature after laser exposure due to heat diffusion using cylindrical

coordinates.

This of course assumes isotropic thermal and optical behavior in the tissue, which

is not quite the case for a number of soft tissues operated on in laser surgery [6, 11].

Recall how the equation S(r, z, t) = µaI(r, z, t) shows the relationship between the

energy delivered via laser beam, S(r, z, t), is dependent on the optical absorption

coefficient µa. This would make the energy added via the laser non-homogeneous

as tissue targets may have a large variance in µa [6, 11].

There are some limitations that should be addressed regarding these equations,

as they do not take into account material removal which occurs concurrently with

additional energy according to Vogel and they rely on the knowledge of a number

of physical coefficients that 1) have high variance in different parts of the tissue

target making approximation of these variables using previous tests unreliable, 2)

are impractical to estimate in a surgical operating room, 3) even if one extracts the

parameters, it remains a difficult task to have the surgeon select the laser parameters
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of the procedure based off of desired S(r, z, t) or I(r, z, t) [6, 7, 12].

2.3.2 Modeling the material removal rate

Alfred Vogel proposed a steady state model to describe the material removal and

ablation depth for laser tissue interactions that fall under “Thermal Interactions”

[7]:

depth =
E − Eth

ρhabl
(2.16)

Figure 2.11: Theoretical Steady-State model for different absorption coefficients and

constant habl = 2580 J/g. Reproduced from Vogel. [7]

Where E is the energy density J/cm2 created by the laser beam on the surface

of the tissue target, Eth is the minimum energy density required to trigger vapor-
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ization and is inversely proportional to the optical absorption coefficient µa, habl is

the ablation enthalpy J/kg which is related to the optical absorption coefficient of

the tissue, and ρ is tissue density kg/cm3. This steady state model assumes that

material removal is time invariant, that a delivery of a threshold radiant exposure is

required to initiate material removal, and that material removal is concurrent with

the delivery of the energy. The model suggests that once the threshold is met, a

linear relationship is observed if density and ablation enthalpy remains the same [7].

As previously mentioned, the optical absorption coefficient of the tissue is highly

variable, which implies a more complicated reality than the linear model proposed

by Vogel. Every tissue from every donor has different optical absorption coefficients

between different times of measurement, during ablation, and different locations on

the tissue [11].
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Chapter 3

Use of Lasers in Laser Surgery

In the last chapter we saw that laser can add heat to tissue and raise the temperature.

Adding heat can be used for a variety of purposes, including tissue regeneration to

destructive procedures such as vaporization [12]. Here we review how lasers are used

in medicine and we focus particularly on their use in surgery.
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Table 3.1: (*) CW = Continuous Wave Mode, SP = Super Pulse Mode, P = Pulser

Mode. Tissue effects and recommended laser settings for Lumenis 30C CO2 laser

surgical system, recreated from Lumenis 30C instruction manual [8].

Tissue Effects
Average

Power
Spot Size

Preferred

Mode *

Beam

Manipulation

Deep Incision High Focuses CW, SP, P Slow

Shallow Incision Low Focused SP Slow

Shallow Incision High Focused CW, SP Fast

Bulky Vaporization High Defocused CW, P Slow

Superficial Vaporization Low Defocused CW Slow

Superficial Vaporization High Defocused CW Fast

Coagulation Low Defocused CW Slow

Coagulation High Defocused CW Fast

Depending on the system and the tool used to direct the laser, the physician

can use the same tool to sterilize, cauterize, ablate, dissect, and resect tissue as

demonstrated in Table 3.1; its versatility is akin to the scalpel blade and is a powerful

tool for surgical operators to use when precision and hemostatic cutting is desired [1,

2, 8, 9]. Surgical Lasers see a wide array of use between different disciplines that treat

soft tissues both in open surgery and minimally invasive surgery, including but not

limited to: gastroenterology, cardiology, ophthalmology, neurology, and dermatology

[1, 2, 9, 10, 13, 14]. Surgical lasers are also a desireable tool for microsurgery: ie

surgical procedures in a small area, often done using scopes with magnification

[2, 9, 14].

In the medical literature, the use of laser technology is reported for mainly two

purposes: tissue ablation and tissue dissection [1, 9]. Use of these terms may create
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Figure 3.1: Long vs Short exposure effects on tissue. Reproduced from Atlas of CO2
Lasers [1].

some confusion, as the same terms are used in other fields of study with slightly

different meaning. In physics, for instance, tissue ablation generally refers to the

process of removing material from tissue. For the purpose of this thesis, we consider

laser ablation as a procedure whose goal is bulk vaporization of diseased tissue (e.g.

a tumor metastasis). Dissection and resection is instead defined as the process of

cutting through tissue to excise an entire specimen, typically a benign or malignant

tumor. These differences are illustrated in Fig. 3.2.
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Figure 3.2: Comparison of laser resection (left) and laser ablation (right) in treating

diseased tissue, labeled “Tissue Target”.

For dissections or resections, thermal damage spread is an undesired affect. Min-

imal residual tissue damage (such as thermal damage spread) is desired [1, 9]. For

ablative procedures, thermal damage spread might be a desired. Higher thermal

damage spread might be beneficial as it would ensure any remaining diseased tissue

that was not vaporized becomes necrotic [1, 9]. The thesis will focus on the problems

associated with creating proper incisions using laser dissection or resection, specifi-

cally gauging ablative incision depth. Moving forward, the depth of a laser surgical

“incision” made using a single pulse will hereto be referred to as “laser pulse depth”

or “ablation depth”.

3.1 Surgical Laser Cutting of Soft Tissue

While various wavelengths of lasers are used to target different media more effi-

ciently, CO2 lasers are used for numerous medical applications across different fields
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due to their ability to vaporize anything composed of a significant amount of water

molecules (ie. soft tissue cells).

This cellular vaporization also adds security when targeting cancerous tissue

by burning any potential cancer cells surrounding the target and killing them. In

addition, CO2 lasers reduce “ operative blood loss by improved hemostasis... Blood

vessels and lymph vessels up to 0.5 mm diameter are sealed by the laser, which also

provides immediate sterilization to the effected site [1]. The CO2 laser is a popular

choice for many soft tissue procedures because unlike other lasers, the pigment of

the tissue has little to no effect on the characteristics on the laser cut or ablation

[1]. Because of its wide clinical use, the CO2 laser will be the laser of use for this

thesis.

Figure 3.3: (Left) How power density and sweep speed affects laser cut depth.

(Right) different parameters for effecting power density for surgical lasers. Repro-

duced from Atlas of CO2 Lasers [1]

In most surgical laser systems, the energy density of the laser cannot be directly

controlled but it is instead regulated through the manipulation of a number of

parameters, illustrated in Fig. 3.3. Regulating power or energy density in laser

systems can be accomplished in multiple ways: altering physical technique of holding
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the laser, altering the wattage, altering the laser mode. In those systems that use

waveguides to direct the energy without distal focusing elements, the surgeon can

further regulate the power density by altering the distal tip of the laser directing

instrument to the target site. By changing the average wattage setting on the laser

system, they can directly alter the average output wattage of the laser. By keeping

other parameters constant, the surgical operator can change the power density of the

laser by changing a single parameter, such as the Power setting on the laser surgical

system, and enable deeper cuts as described in Fig. 3.3. Regulating these parameters

to solve for a desired heat effect is not entirely straight forward as discussed in section

2.3. If a surgeon desires a 1 mm depth cut, how would they select their settings?

How would a surgeon account for the differences in optical properties within the

same tissue?

3.2 Current Methodology - Selecting Laser Pa-

rameters

If regulating laser parameters is not straightforward, then how do surgeons do it?

Human surgeons certainly do not compute the complex differential equations dis-

cussed in 2.3.1 while in the operating room, and calculating the necessary parameters

beforehand may be detrimental to the patient as the optical properties may be dif-

ferent from time to time [11]. If this is the case, how does one select their laser

parameters?

To better understand this process, it can be useful to look at the training process

for laser surgical procedures. Fig. 3.4 illustrates the generalized training for surgical

laser operators, created from an interview conducted with a thesis committee mem-

ber, Dr. Matthew Flegal, with clinical teaching experience. One must keep in mind
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Figure 3.4: A generalized track on learning hand-held surgical lasers that diverges
in methods based on learning environment.

the following information was put together from interviewing a single experienced

source, and is subject to variation from surgeon to surgeon.

Both surgeons in the lab animal field and the hospital setting began training

with inert objects with biological properties, such as fruit, chicken, pork shoulder,

etc. The idea was mostly to learn how to navigate the fiber in a confined space

but also to observe how the physical orientation can change and control the desired

thermal effect. After the initial introduction into manipulating lasers, the two fields

deviate. Those in the lab animal specialty will have more opportunity for hands on

training with animal cadavers and terminally ill anesthetized lab animals, allowing

them to observe the inflammatory response first hand. Those in the hospital setting

would seek additional guidance from more skilled laser operators on how to perform

the procedures, and shadow some of the procedures themselves before attempting

one.

Now that there is a generalized understanding of the circumstances which sur-

geons learned how to use laser systems, let us comment on the thought process that

goes on in the operating room. Based the interview conducted with Dr. Flegal,

a few conditionals were isolated to describe the mental modeling that occurs for
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individuals performing laser dissections or resections.

• The material properties of every tissue from every patient is different, so Sur-

geons are walking into each procedure with some unknowns [11].

• There is a desire not to perforate the tissue or cause a hemorrhage (ie, do not

punch too deep to where the tissue cannot recover or cause excessive bleeding).

• Surgeons want to execute a laser resection with as little thermal damage spread

as possible, minimizing the number of sweeps.

If we wanted to express the hypothetical model surgeons build in their mind

using simplified mathematical notation, it could be described as:

DesiredDepth = f(LaserParameters− CautionFactor) (3.1)

lim(Confidence→∞)CautionFactor = 0 (3.2)

DesiredDepth refers to the desired depth the surgeon would like to execute with

a single pulse or sweep of the laser. LaserParameters refer to the optimal laser

parameters, which at this point is unknown, used to achieve the DesiredDepth.

Confidence refers to the surgical laser operator’s confidence level that selecting a

higher power density laser parameters will not cause unnecessary damage. CautionFactor

has an inverse relationship with the Confidence value and represents the caution

the surgical operator has in selecting higher laser parameters.

For a surgeon to reach a DesiredDepth, they leverage their experience and the

experience of others to formulate the LaserParameters that would execute the

procedure with minimum thermal damage spread. But as stated before, there are

unknowns involved due to variances in the absorption media, non-homogeneity of

the target, and biological variability around tissue. Because of these unknowns,
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surgeons take some degree of caution going into the operation, represented above

as CautionFactor. Taking this information and the conditionals into account, it

is reasonable to picture an equation such as the one above where DesiredDepth

is equal to some function of LaserParameters and CautionFactor where as the

surgeon increases Confidence through observation of laser tissue interaction, the

CautionFactor approaches 0. Some surgeons apply interrogation pulses, depositing

low amounts of laser energy but still enough to cause vaporization of the cellular

material, and gauge the laser tissue interactions and depth using visual feedback.

This in turn theoretically allows them to start building a correlation map of sorts to

determine how they might augment the laser setting they had in mind before they

start a resection procedure.

3.3 Modeling the laser pulse depth.

Based on the overview given above of how surgeons learn and perform laser cutting,

we propose a novel approach to model a relationship between a laser parameter and

laser pulse depth in biological tissue. We propose an approach where the laser first

applies a few interrogation pulses, mimicking the surgical technique to build confi-

dence, on the tissue and observes the resulting cutting depth to build tissue-specific

models on-the-fly. This approach is inspired and motivated by the observation of

experienced laser surgeons in their practice: before deciding what laser parameters

to use, they often apply a number of laser pulses and observe how the tissue reacts.

Our aim is to automate this process and provide a tool that learns these relation-

ships on the fly, as a surgeon would. We propose to use a robot to consistently

and repeatedly manipulate the laser fiber to deposit the same energy density on

tissue, and the use of statistical regression techniques, in combination with image

30



www.manaraa.com

processing algorithms, to observe the laser pulse depth and rapidly build a model

capable of predicting the pulse depth.
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Chapter 4

Modeling the laser ablation

process

This chapter focuses on the formulation of hypotheses concerning modeling the laser

ablation depth with a single pulse (laser pulse depth) and the materials and methods

used to test out the hypotheses.

4.1 Problem formulation

In this thesis, we formulate the problem of modeling and predicting the laser ablation

depth using methods and concepts from statistical regression theory. As we have

seen in section 2.3.1, the beam intensity and power distribution of the laser cannot

be directly prescribed, but it is instead regulated through the selection of the several

operational parameters. Inspired by how surgeons perform laser cutting, we wish to

mimic their ability to manipulate and model the effects of the laser parameters:

• the power level P, i.e. the total energy flowing through the beam in unit time.

There is a relation between this parameter and the beam intensity I at any
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cross-section ẑ along the optical axis: P = 2π
∫+∞
0 I(r, ẑ)dr.

• the laser spot size wz, as it was defined in section 2.1.2 and 2.1.3. Conven-

tionally, the spot size is measured at the surface of the tissue, i.e. at z = 0.

• the time of exposure τ , which is defined as the amount of time for which

the laser output is enabled.

• the beam velocity v relative to the tissue surface. For a stationary laser

beam, v = 0.

We wish to explore models that map the laser parameters outlined above to the

resulting ablation depth.

4.1.1 Hypothesis 1: Modeling the Ablation Depth as a Para-

metric Function of the Laser Parameters

We hypothesize that, for any given combination of laser wavelength and tissue type,

a function f exists that models the mapping between the vector of laser inputs

u = [P,w, τ, v] ∈ U , with U ⊂ R4, and the resulting laser ablation depth:

d = f(u) (4.1)

We further hypothesize that the function f can be approximated using the following

parametric model:

f̂(u) = w φ(u) (4.2)

where d is the laser ablation depth depth, φ(u) is a 5-dimensional column vector of

basis functions φj(u) with φ1(u) = 1, and w is a vector of regression coefficients. To

study the validity of this hypothesis, we propose to (1) collect experimental data, i.e.
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a dataset consisting of L data pairs {di,ui}i=(1,...,L), (2) select a family of suitable

basis functions φj, and (3) estimate the vector of parameters w with an appropriate

learning algorithm. Execution of these three tasks will be described in detail in the

next chapter.

4.1.2 Hypothesis 2: Building Tissue-Specific Ablation Mod-

els On-the-Fly

We hypothesize that an equation d = f̂L exists where f̂L is trained using regres-

sion techniques from data sets of [ul, dl] to predict for data pairs [uL, dL] where

d, dl, dL are corresponding maximum ablation depth measurements, ul,uL are the

corresponding laser settings described in hypothesis 1, and ul < uL.

The model building protocol involves using data from less powerful laser pulses,

in terms of power density, to predict for data using more powerful laser pulses. To

accomplish this, all laser parameters in vector u, defined in hypothesis 1, will be

kept constant with the exception of one parameter which will remain an independent

variable. The selection of this parameter will be determined in section 4.2.3. This

protocol is inspired by how physicians estimate laser parameters for soft tissue laser

dissection using low laser settings to minimize tissue damage.

4.2 Materials

In the remainder of this chapter we describe the materials used to collect experi-

mental data. Based on background information from chapters 2 and 3, there are

several design constraints for the experiment: 1) selected parameters for building

predictive model must change two dimensional power density of the laser pulse, 2)

samples used for testing must be from the same type of tissue and from the same
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donor in order to limit the effects of biological variability [11], 3) must be able to

extract as many samples as possible from aforementioned tissue.

Specifications of equipment used in these experiments (Panda Robot, FLIR Ther-

mal Camera, LEICA Cryotome) can be seen in Appendix A.

4.2.1 Tissue Sample and Preparation

The tissue model used in this study is chicken breast. Although it may not be

representative of every type of soft tissue that may be found in clinical practice,

chicken breast was selected because it is easy to procure and has been used in

another laser ablation study [15]. Chicken breast also presents challenges similar to

those encountered in soft tissue laser surgery: 1) the orientation of the fibers affects

the structural and thermal properties, 2) the orientation of these fibers was unknown

during and after laser action, 3) the denaturation of proteins in the thermal damage

zones surrounding the ablation crater induces stress in the tissue (the kinetics of

which are largely unknown) [12]. A tissue inflammatory response might pose a risk

in changing the ablation profile of a laser surgical cut, but because the cells in the

chicken breast tissue were already killed via food processing and freezing variation

from tissue inflammation will not be represented in this experiment [16].

We used the following protocol for the preparation of tissue samples. The chicken

breast was kept frozen prior to testing. The whole chicken breast was removed

and laid on a table or cutting board with the anterior side facing up. An 8 mm

biopsy punch, “biopunch - 8” made by Ted Pella Inc., was pressed into the anterior

surface of the still frozen chicken breast. The result of the procedure was cylindrical

shaped tissue samples. Before performing laser experiments, tissue samples were

kept in a warm water bath kept at 28-30 degrees C to bring samples to just above

room temperature and to keep the tissue hydrated. The water bath was prepared
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using a scientific heating plate and a calibrated thermometer to measure the water

temperature. The chicken temperature was measured after it was placed in the water

using an FLIR Thermal imager, allowing for non-invasive measurements. Because

the samples have such low mass, it generally took less than 2 minutes to bring it

up to temperature. It is anticipated with this setup that most samples will fall

within 2-3 degrees C of the median. Some heat loss is expected once the tissue is

removed from the water bath. It is important to keep the temperature range small

in the samples to mimic the human body’s ability to keep most tissues within a few

degrees from 37 C. As such if the tissue has remained out of the bath for more than

1 minute, it is instructed to place it back to bring up to room temperature.

4.2.2 Benchtop setup

For the design of the experiment, the following assumptions were made:

A 7-axis robot from Franka Emika (Munich, Germany) was used to manipulate

the laser waveguide. This robot used a custom end effector seen in Fig. 4.1 to grasp

and use the laser waveguide.
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Figure 4.1: Custom end effector with components labeled

4.2.3 Laser System

The laser system being used in this study is the Lumenis-30C, a CO2 laser system

(wavelength: 10.6 µm max power of 30 Watts) [8]. This system has an internal, ver-

tical optical cavity with a “proprietary mixture of gases” for the CO2 laser medium,

as well as an internal laser testing mechanism to ensure proper operation during

the procedure [8]. It allows for change of the laser mode, the tissue target exposure

mode, the time on/off for the laser, and the average power of the laser [8]. To

influence the spot size of the laser, the surgeon would need to change the distance

from the fiber tip to the tissue by hand [1, 8, 9]. We will describe the laser param-

eters that come with the laser system, and select which parameter will remain an

independent variable while the others remain constant.
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Laser Modes There are three primary laser modes available through the Lumenis

30C: Continuous wave, Pulser, and Super Pulse [8]. The Super Pulse setting is

characterized in Fig. 4.2.

Figure 4.2: Graph of energy delivered from Super pulse as a function of Power, time

on, and time off. Reproduced from Lumenis 30C User manual. [8]

Continuous wave, as the name suggests, is a laser emitted at constant power for

the entire duration of the laser action. Pulser is repeated laser pulses at a continuous

power. Energy delivery in Super pulse is characterized by a function where power

ramps up to a high power that is significantly larger than the average power and

then ramps down. Short pulsed modes like super pulse have been shown to minimize

thermal spread, according to the Lumenis 30C instruction manual [8]. This mode is

most likely to be used in laser dissection and laser resection procedures, according

to a journal publication on resection of benign eyelid tumors using Super Pulse CO2

lasers, which is why Super Pulse will be the selected laser mode for this thesis

[13].
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Power Setting The Power setting, according to the manual, refers to the average

power emitted by the laser. For each of the modes, except for continuous wave, the

surgeon would need to calculate the average power, if they desired. In the manual,

it states that Super pulse with a Power setting of 0.5-5 W would be optimal for

“Bulk Vaporization,” where Surgeons kill a tissue target using thermal damage and

vaporization, and it states that Super Pulse with 5-10 W would be more optimal for

laser dissection or laser resection procedures [8]. For the purpose of this thesis, will

be modeling how power affects laser pulse depth, and limiting the range of power

for experimental data collection to 5-10 W.

Tissue Target Exposure Tissue Target Exposure modes refer to the way the

target receives the laser energy, and while it may use similar terminology it does not

determine the laser modes described earlier. For example, a beam emitted constantly

is classified as continuous exposure, where the laser is on as long as laser activation

is occurring, and can be performed using all three laser modes (Continuous wave,

Pulser, and Super Pulse). Single Pulse Exposure, which refers to exposing the laser

for a singular period of time that the user can set in the console, and repeated

exposure, which refers to exposing the laser for multiple laser pulses where the user

can input settings for frequency of repetitions [8]. To minimize thermal damage

spread for a laser dissection/resection, most surgeons select the repeated exposure

or single pulse settings. On the other hand, Continuous would be more optimal for

procedures where higher thermal damage spread is desired [8]. Because the subject

of the thesis is attempting to model depth from a single pulse, single mode will be

used for the experimental procedure.

Time settings On the Lumenis 30C, “Time on” and “Time off” refer to the time

the laser is firing a pulse and the time in between each fired laser pulse. Both settings
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apply for any repeated Tissue Target Exposure, and only “time on” applies to single

pulse exposure [8]. Charring on the samples was desired to provide additional visual

feedback during data acquisition. During preliminary testing, fissures on the tissue

surface were mistakenly identified as the ablation crater. With some preliminary

experimentation, it was determined that “time on” of 0.2 seconds would be used for

the thesis.

4.3 Methods

Having introduced the components of our setup, we now describe the experimen-

tal protocol we developed to perform controlled laser ablations and measure the

corresponding ablation depth.

4.3.1 Experimental Protocol

All necessary laser safety guidelines were followed, such as having the fume extractor

on during laser experiments, and proper safety equipment worn during the proce-

dure. Prior to the experiment, tissue was prepared in a warm water bath using the

protocol listed in section 4.2.1. Tissue was kept in the water bath and monitored

using an FLIR thermal imager until the laser was ready to fire and the robot was

in position.

1. The Lumenis 30C was turned on using the following laser settings: Single

Pulse, Super Pulse, and Time-on = 0.2 seconds. Power was determined on a

sample by sample basis. The reasoning behind these selected laser parameters

was explained in section 4.2.3.

2. The laser waveguide was attached to the Lumenis 30C with the distal end

fastened into the robot end effector seen in Fig. 4.1.
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3. Afterwards, the robot end effector was zeroed on the analysis fixture, over

where the sample will be placed seen in Fig. 4.3. This ensures that the robot

knows how to assume poses relative to the tissue location.

Figure 4.3: Robot end effector remembers this point and associates it as the zero

position in the X,Y,Z axes

Figure 4.4: Tissue target is measured to ascertain the height, Robot moves to be 2

mm + the tissue target’s height above the zeroed point
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There is a 1 minute window to complete the next 5 steps and perform a laser

action after the tissue sample is removed from the water bath. If too much

time has elapsed, the tissue sample should be brought back to temp, and the

procedure should restart here at step 4.

4. After moving the end effector away, the tissue sample was removed from the

bath and placed on the analysis fixture on the previously zeroed spot.

5. Using a portable microscope camera (VSATEN3) measurements were taken of

the tissue length in the z direction using pixel measurements.

6. The robot was commanded to assume a pose where the end effector is 2 mm

+ the newly measured height of the sample above the zero point.

7. The thermal camera (FLIR A655sc) acquires a non-invasive temperature mea-

surement of the sample before laser action.

8. The robot and the laser operator give the command for laser action and fires

a laser pulse at the target. A fume extractor was used to remove any tissue

particulate from the air, as is required by laser safety protocols.

9. The tissue was then placed in a compliant tray without directly interfering

with it and then frozen using an optimal frozen sectioning compound from

Sakura Tech

10. Repeat steps 4-10 using remaining samples in the heated water bath. For this

experiment, sample groups of 10-12 samples were laser pulsed and frozen.
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Figure 4.5: Cryotome slicing and imaging setup

When the sample(s) were frozen properly in the OCT fluid, they were taken to

a Leica cryotome for slicing and imaging. The VSATEN portable microscope

was outfitted with a yellow filter, and portable UV light was placed inside the

cryotome to illuminate the sample. The cryotome setup described above, seen

in Fig. 4.5, works by keeping the cutting tool fixed, and moving the sample

closer and down over the tool. Taking advantage of this feature and the micron

accuracy this machine has in bringing a sample back to the same plane, we are

able to set up a digital microscope to observe the tissue and the laser ablation

profile. During slicing, the portable digital microscope with a yellow filter takes

pictures of the front face of the sample after every slice. The UV light fluoresce

and enhance the profile of the cut while the yellow filter enhances the image

further, significantly increasing contrast on the digital microscopic images.

The UV light fluoresces what appears to be thermally damaged tissue in laser
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ablated chicken breast. But it is unknown what fluorophores are reacting to the

light, and it is unknown if they are exclusive to thermal damage, although they

initially appear to be at least for the chicken breast. As such, UV excitation

was not enough to identify an ablation zone, and charring on the surface of

the tissue was necessary to identify where the ablation zone starts.

11. Sample(s) were trimmed down using 50 micron slices until evidence of laser

tissue interactions were noticed using a two-step verification. 1) Char must

be present on the surface of the ablation, 2) there must be a clear ablation

profile, usually enhanced by a green glow.

12. Once seen, 50 micron slices were taken and images of the face of the sample

after each slice.

13. Slices were taken throughout the ablation profile and images were acquired

using the portable microscope camera, total of one image per slice.

14. Data was recorded for outliers, if the sample seemed to slip out and break, or

the ablation profile looked non uniform.

15. Data was recorded for slice thickness from the start of the ablation profile. If

slice thickness changes, mark it in the notes. It is imperative to record the

distance traveled by the sample while slicing (ie. the slice thickness for each

slice) for data analysis later.

Using imageJ, pixel measurements were taken for maximum depth in each slice

of the ablation profile for every 0.05 mm slice and plotted. Gaussian fit models were

constructed for each sample’s ablation profile. Specifications and information on the

Thermal Camera and Cryotome used can be found in Appendix A.
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Figure 4.6: Sliced face of the tissue sample, UV Fluorescent lighting highlights area
with thermal damage

4.3.2 Data acquisition

Using the assumption that one can plot a 2D view of the ablation profile along a

Gaussian-like curve, using the total number of slices multiplied by the slice thickness

as the X and maximum depth recorded for each slice as the Y. Once sectioned and

imaged, the depth of the ablation at each slice was measured using pixel measure-

ments (ImageJ). The Gaussian equation for fitting data collected from the images

are as follows

f(x) = ae(
−(x−b)

c
)2 (4.3)

where the parameter a is the peak for the Gaussian fit of the laser ablation,

which in this case is representative of the maximum depth of our ablation crater.

The a parameter in the Gaussian equation is recorded for each sample and fed into

the regression model.
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Figure 4.7: One slice of the tissue sample, slicing in the positive X direction and

extracting depth of pulse per slice in the Y direction

Figure 4.8: Gaussian fit for slice profile of the tissue sample in the previous figure,

X is the slicing direction and Y is the depth
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4.3.3 Regression Modeling

Supervised learning is an appropriate solution for trying to model phenomena that

are difficult to describe in closed analytical form [17]. Regression learning is one

such method used to create estimation models based on observed data [17]. The

proposed method is to use regression techniques to model the relationship between

the variable laser parameter, Power, and laser pulse depth using multiple techniques.

The proposed model building techniques treat the tissue and the laser system

as black boxes and try to glean estimation curves to help predict what laser power

setting should be used. When comparing models for general data analysis experi-

ments, one would take data points at random to train or build a model and take

the remaining data points to run statistical tests to validate the model (hypothe-

sis 1). This procedure may not reflect well in clinical practice where the physician

would prefer to use only lower power levels to build their mental model. A more

clinically relevant procedure would be to train these models on data points below a

certain power threshold and validate them on the data points above the threshold,

mimicking the surgical technique (hypothesis 2). Temperature data was collected

to use as criteria for supervision techniques. The models may be refined using data

exclusion or multi-variable regression using temperature and power. The criteria on

which data can be excluded based on temperature values will be determined by the

total distribution of temperature values for the collected data.

The regression modeling workflow is as follows:

• Observe the total data and temperature data. Hypothesize an equation that

describes the trends observed.

• Perform regression to fit the equations to the data and compare them.

• Perform temperature based data exclusion, or multi-variable regression.
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• Train and validate the models using randomized data points from the total

data and the temperature filtered data. -Hypothesis 1

• Train the models using data points below a power threshold and validate using

data points above the power threshold.

Each method for the regression techniques are described in their corresponding

results section.
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Chapter 5

Results and Discussions

In this chapter, we report on the collection of experimental evidence aimed to test

the two hypotheses formulated in section 4.1. An initial set of experiments was

conducted to explore the range of laser inputs and inform our experimental design.

Exploratory data analysis was performed to inform the selection of basis functions

for the regression. The resulting models were compared via goodness of fit metrics:

degrees of freedom (DFE), R2, Root Mean Square Error (RMSE), and Validation

Root Mean Square Error (V RMSE).

5.1 Initial Data Collection

Excluding preliminary data collected to build better procedural protocol, fifty-seven

samples were collected over five testing intervals. As outlined in the procedure in

chapter 4, only Power (as reported by the laser system) and laser pulse depth are

measured, and all other parameters (time on, Super Pulse, 2 mm distance from

target) are assumed constant. The range of the input Power is 0-10 W, but data

for Power levels less than 5 W were difficult to collect reliably due to an absence of

charring. In section 4.3.1, it was explained why charring was necessary to identify
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an ablation zone. The laser ablations for power levels less than 5 watts were so small

and left behind little to no charring that it was difficult to differentiate them from

the fissures on the surface of each sample. Additionally, the manual for the laser

system instructed that laser surgical operators use power settings of 5-10 Watts for

the purpose of laser dissection, as described in section 4.2.3. As a result, only data

from Power levels of 5-10 W were used for the experiment. This section details

the total results and distribution of the data. 57 total data points were collected

following the procedure outlined in chapter 4.

5.1.1 Results: Power vs Incision Depth

The scatter plot for the total data shows a positive proportional relationship between

Power level and laser pulse depth.
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Figure 5.1: Scatter plot of the total data for Power and Laser Pulse Depth

We first performed a One-Way analysis of variance (ANOVA) to test the hypoth-

esis that the data shown in Fig. 5.1 could be simply explained by a simple intercept

model. We tested the null hypothesis H0: d = Pb1 + b0, b1 = 0, with alternative

hypothesis b1 6= 0. The F-Test rejected the null hypothesis with p-value 4.206 ·10−6,

showing statistical significance between Power, as reported by the laser system, and

laser pulse depth. We understand that this is only a portion of the truth, that the

ablation depth is more dependent on the power density of the laser and not just the

power [7].
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Figure 5.2: Temperature data histogram

Figure 5.3: Power data histogram
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5.1.2 Discussion

The scatter plot and the one-way ANOVA test revealed an upward trend between

power as reported by the laser system and laser pulse depth. We understand that

this is only a part of the truth, as the literature points out that the relationship is

between power density and laser pulse depth, which can be changed using the power

setting [7]. The laser pulse depth seems to taper off after 8.5 W. Because the tissue

and the laser surgical system is being treated as ”black boxes”, it is unclear if this

observed effect is rooted in the tissue properties or the laser system output.

The Power histogram from Fig. 5.3 shows that the data distribution was not

perfectly equalized, which would lead to higher power data points carrying more

weight in the models. Unexpected behavior was observed early on in the higher

power level data points, and more experiments were performed to ascertain if those

data points were outliers or not. Temperature data was also recorded for the purpose

of verifying the experimental conditions were met. It was found that the temperature

distribution was larger than what was experimentally desired in section 4.2.1. It is

hypothesized that the constant airflow from the fume extractor, coupled with varied

execution times for each sample (time from removing the sample from a water

bath to performing laser action), may have lead to this large variance in sample

temperature before laser action, seen in Fig. 5.2. It was found through statistical

testing that samples with different recorded temperatures had significantly different

depth measurements and might explain much of the variance seen in the plots. the

models might benefit from incorporating temperature into the predictive models or

excluding data based on the temperature distribution curve, excluding data points

where temperature is less than 20 C and greater than 22 C. This criteria was selected

because 32 out of the 57 data points resided in this range. This is further explored

in section 5.2.1.
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5.2 Model Selection

This section contains the experimentation involved with building different models

and comparing their goodness of fit metrics: RMSE, V RMSE, and R2. The goal

is to select the model with the best capability for estimating depth and to explore

solutions involving Multi-variable regression with Temperature and Power as well as

explore the effectiveness of data exclusion using temperature values as the criteria.

Visual interpretation of the data in Fig. 5.1 seems to suggest a positive relation

between the laser power and the ablation depth. We use two possible models for

statistical regression (linear and logarithmic) detailed in the next section.
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5.2.1 Results

Figure 5.4: Linear fitted model (RMSE = 190, Rsq = 0.32) compared to logarithmic

fitted model(RMSE = 188, R squared = 0.34)

Table 5.1 displays the results of linear models generated using random data points

from the total data using this equation:

D̂ = b1P + b0 (5.1)
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and comparing the models generated with the rest of the data as validation data,

where D̂ is the estimated depth, P is the power level of the laser, b1 and b0 are

coefficients. The method of selecting random data points for training and validation

was performed five separate times with training and validation size of 28 data points

each.

The confidence interval for the validation RMSE values is [175,214] µm. Table

5.2 displays the results of logarithmic models using random data points from the

total data using this equation:

D̂ = b1ln(P ) + b0 (5.2)

and comparing the models generated with the rest of the data as validation data,

where D̂ is the estimated depth, P is the power level of the laser, b1 and b0 are

coefficients.

The confidence interval for the V RMSE values is [175,214] µm.

Because of the large variance observed in temperature recordings, linear and

logarithmic models were explored to see if temperature values can help explain some

of the unexpected behavior seen in the total data, Fig. 5.1. Below are the results

Table 5.1: Goodness of Fit metrics for linear models trained and validated using
randomly selected data points.

Fit Name R2 DFE RMSE (µm) V RMSE (µm)

Rand1 0.41 26 193 190
Rand2 0.41 26 168 209
Rand3 0.27 26 201 183
Rand4 0.47 26 163 213
Rand5 0.25 26 205 177
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Table 5.2: Goodness of Fit metrics for logarithmic models trained and validated
using randomly selected data points

Fit Name R2 DFE RMSE (µm) V RMSE (µm)

Rand1 0.46 26 187 190
Rand2 0.44 26 163 209
Rand3 0.28 26 199 183
Rand4 0.46 26 166 213
Rand5 0.28 26 201 177

when incorporating Temperature values, T , into the models using these equations.

D̂ = b1P + b2T + b0 (5.3)

Figure 5.5: Linear fitted planar model (RMSE = 177 µm, Rsq = 0.42)

D̂ = b1ln(P ) + b2T + b0 (5.4)
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Figure 5.6: Logarithmic fitted model(RMSE = 176 µm, R squared = 0.43)

Data exclusion using temperature as a criteria, all data outside T = 21 +/- 1 C,

was explored as a possible solution to create better predictive models. This criteria

was selected because 32 out of the 57 data points resided in this range. Below are

the results when excluding data based on temperature criteria.
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Figure 5.7: Plot of included data based on parameters of Temperature = 20 to 23

C. Linear fitted (RMSE = 162, R square = 0.5) vs Logarithmic fitted (RMSE =

163, R squared = 0.5)

Table 5.3 displays the results of linear models generated using random data

points from the Temperature filtered data using this equation:

D̂ = b1P + b0 (5.5)

and comparing the models generated with the rest of the data as validation data,

where D̂ is the estimated depth, P is the power level of the laser, b1 and b0 are

coefficients.
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Table 5.3: Goodness of Fit metrics for linear models trained and validated using

randomly selected, temperature filtered data points

Fit Name R2 DFE RMSE (µm) V RMSE (µm)

Rand1 0.55 14 185 151

Rand2 0.44 14 176 143

Rand3 0.56 14 130 187

Rand4 0.46 14 188 135

Rand5 0.55 14 112 202

The 95% confidence interval for the validation RMSE values is [127,200] µm.

Table 5.4 displays the results of logarithmic models using random data points

from the Temperature filtered data using this equation:

D̂ = b1 ∗ ln(P ) + b0 (5.6)

and comparing the models generated with the rest of the data as validation data,

where D̂ is the estimated depth, P is the power level of the laser, b1 and b0 are

coefficients.

60



www.manaraa.com

Table 5.4: Goodness of Fit metrics for logarithmic models trained and validated

using randomly selected, temperature filtered data points

Fit Name R2 DFE RMSE (µm) V RMSE (µm)

Rand1 0.59 14 176 164

Rand2 0.46 14 173 154

Rand3 0.53 14 134 186

Rand4 0.46 14 189 135

Rand5 0.54 14 113 201

The 95% confidence interval for the validation RMSE values is [135,200] µm.

A paired T.test was performed on the V RMSE values for the linear fit and the

logarithmic fit for the Temperature filtered data, with an α = 0.05. The results

showed that there was not a significant difference, with a p.value of 0.07.

5.2.2 Discussion

Both the linear and logarithmic models built from the total data have comparable

metrics, with the logarithmic fit being marginally greater. It might possibly be due

to the curve like behavior observed in Power levels greater than 8.5 Watts. One of

the limitations of this study is that we have no hard evidence of how our models

could perform outside of the range of inputs used for training, i.e. outside of the

5-10 W range. The logarithmic model predicts no ablation at less than 2 Watts, we

have some evidence to show this is not necessarily true in Fig. 5.8, and the linear

model states ablation occurs at 0 Watts which we understand to be impossible.
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Figure 5.8: A slice of a preliminary sample that has been ablated using 2 W single

laser pulse, Super Pulse setting. NOTE: Not part of the experimental data

When temperature was introduced into the model for plane fitting, higher R2

values and lower RMSE values were achieved, showing that the temperature differ-

ences may explain some of the variance observed. Seeing this, data exclusion was

introduced based on the total temperature distribution in Fig. 5.2.

Data that did not fall in the temperature range of 20-22 degrees C was excluded,

the remaining data referred to from here on as “temperature filtered data,” and

allowed for models with higher R2 values and lower RMSE values. The temperature

filtered data was tested by selecting random data points to train a model and random

data points to validate against. This was done five times each for both linear fits and

logarithmic fits, and the results are comparably better in terms of V RMSE when

compared to their counterparts from the total data. When looking at temperature

filtered data, the linear fits appear to be the better models with a lower mean V

RMSE and lower confidence interval for V RMSE. The paired t.test shows that

though the data sets are different, they were not significantly different enough to
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pass a 95 percent t.test.

5.3 Learning models on the Fly

It was touched on in section 4.1.2 that validating the model off of random data points

may not be as clinically relevant as other methods for model generation. In current

practice, a surgeon uses low power levels to estimate the laser tissue interactions

with the assumption that their desired power setting is higher. In essence, they

estimate the depth v power relationship for higher power levels using multiple low

power level interrogation pulses. This section goes over model generation using lower

power levels and validates using the remaining higher power levels.

5.3.1 Results - Learning Models on the Fly

Fig. 5.9 and Table 5.5 show the results of linear models trained using power levels

below a moving threshold value and validated with the remaining portion of the

total data.

Table 5.5: Goodness of Fit metrics for linear models trained with data points below
a power threshold and validated with data points above a power threshold P

Fit Name R2 DFE RMSE (µm) V RMSE (µm)

P<= 6.5 0.02 18 194 215
P<= 7.5 0.18 29 193 197
P<= 8.5 0.37 40 193 267
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Figure 5.9: Linear Models trained using varying power levels from total data and

validated against higher power levels

Fig. 5.10 and Table 5.6 show the results of logarithmic models trained using

varying power levels and validated with the remaining data using the total data.

Table 5.6: Goodness of Fit metrics for logarithmic models trained with data points
below a power threshold and validated with data points above a power threshold P

Fit Name R2 DFE RMSE (µm) V RMSE (µm)

P<= 6.5 0.02 18 195 239
P<= 7.5 0.18 29 195 180
P<= 8.5 0.37 40 196 211
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Figure 5.10: Logarithmic Models trained using varying power levels from total data

and validated against higher power levels

A paired t.test was performed to see if there was a difference between linear and

logarithmic fit validation RMSE values using total data. The T.test failed, showing

there was not significant difference.

Fig. 5.11 and Table 5.7 show the results of linear models trained using varying

power levels and validated with the remaining data using the Temperature filtered

data.
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Figure 5.11: Linear Models trained using varying power levels from Temperature
filtered data and validated against higher power levels

Table 5.7: Goodness of Fit metrics for linear models trained with temperature

filtered data points below a power threshold and validated with data points above

a power threshold P

Fit Name R2 DFE RMSE (µm) V RMSE (µm)

P<= 6.5 0.02 10 194 170

P<= 7.5 0.18 16 193 113

P<= 8.5 0.37 21 193 127

Fig. 5.12 and Table 5.8 show the results of logarithmic models trained using

varying power levels and validated with the remaining data using the Temperature

filtered data.
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Figure 5.12: Logarithmic Models trained using varying power levels from Tempera-
ture filtered data and validated against higher power levels

A paired T.test was performed to see if there was a difference between linear and

logarithmic fit V RMSE values using temperature filtered data. The t.test failed,

showing there was not significant difference.

5.3.2 Discussion

In models created using the total data as seen in Tables 5.5 and 5.6, the V RMSE

values for both the logarithmic and the linear fits were larger than the RMSE from

models generated using the entire data, Fig. 5.4. While it does improve slightly, it

never beats the RMSE of 163 µm seen in models created using temperature filtered
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Table 5.8: Goodness of Fit metrics for logarithmic models trained with temperature
filtered data points below a power threshold and validated with data points above
a power threshold P

Fit Name R2 DFE RMSE (µm) V RMSE (µm)

P<= 6.5 0.12 10 217 127
P<= 7.5 0.18 16 199 108
P<= 8.5 0.30 21 178 118

data, seen in Fig. 5.7. The temperature filtered data performed far better for both

linear and logarithmic fits. In the linear fit, Table 5.3, the V RMSE improved

significantly and seemed to converge with P<= 7.5. In the logarithmic fit, Table

5.4 the V RMSE still improved but only slightly, and seemed to converge with P<=

7.5 as well. Overall, the logarithmic fit using Temperature filtered data performed

the best but only incrementally. The t.test revealed that there was no significant

difference between the goodness of fit metrics for linear or the logarithmic models

trained with either total data or temperature filtered data.

5.4 Overall Discussion

It appears that both the linear equations and the logarithmic equations proposed

can build accurate models up to 108 µm using metrics that can easily collected

from an operating room, even when treating the laser system and the tissue tar-

get as black box components. Temperature filtered data enabled far better models

compared to the total data models. One can argue that the temperature filtered

data (temperature of 21 C +/- 1 ) has higher relevance clinically due to the body’s

ability to regulate and maintain a small range of temperature throughout the body.

The test setup described in sections 4.2.2 and 4.2.3 was designed to keep the tissue

moisturized and bring it up to temperature before laser action. The large temper-

ature distribution was not intended and may have been a consequence of using a
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fume extractor, which is also used in laser surgical procedures as well [1, 9]. It is

unclear at this time how much temperature variance a fume extractor introduces on

the tissue targets, or if they are activated only during tissue action or left on the

whole time. While both linear and logarithmic models performed well, both in the

randomized data points training and validation and in the Power threshold train-

ing and validation, and have similar predictions and V RMSE values, both diverge

when looking at power levels lower than the training data. Notice how in all the

logarithmic models, it predicts that a laser pulse with Power = 2 W emitted using

our procedure would have a laser pulse depth of 0 micrometers. It also predicts a

negative value for all Power values less than 2 W. This is untrue, as preliminary

data shows that ablation did occur at these power levels and there was a noticeable

depth, although difficult to measure.

As such, both the linear models and logarithmic models built on the fly could be

used to predict the laser pulse depth for Power levels higher than the samples used

to train the models, but it is hypothesized that the linear model might be able to

predict for power levels higher and lower than the samples used to train the model

better than the logarithmic model. However, the logarithmic model seems to excel

in predicting data using lower power levels, as seen in table 5.8, when compared

to the linear models in table 5.7. With better imaging and topography scanning

equipment, such as a profilometer, one would be able to obtain accurate measure-

ments for the ablations created with smaller powered laser pulses. Future studies

are recommended where more accurate measuring systems that can be introduced

in the operating room or similar to ones currently used in operating rooms. While

temperature may not be much varied during the initial laser pulse, the temperature

of the tissue around the ablation zone will have increased in temperature. This can

make laser cutting using multiple pulses difficult to perform without also measuring
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and accounting for temperature.
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Chapter 6

Conclusions

Based on the experimental results, we can conclude that the proposed method of

building accurate models on the fly using only information provided by the laser

system and controlling for other parameters is feasible. Moreover, it is possible

to acquire accurate approximations of higher power laser ablation depth using a

range of data built using lower power. We can conclude that this method, proposed

in hypothesis 2, is better than the randomization protocol most used in building

predictive models, ie. randomly selecting laser parameters and recording the data.

One thing of note is that temperature of the tissue target has a larger effect on

laser pulse depth than previously assumed. While this may not affect predictions

for initial pulses for a procedure (ie. the initial laser incision), I hypothesize that it

would increase the maximum ablation depth of subsequent pulses in close proximity.

We can conclude that temperature of the target has a measurable affect on the

maximum ablation depth and should be monitored in all soft tissue laser surgical

procedures.

The study encountered a number of limitations, the most important of which

was the ability to collect data reliably only in the 5-10 W range. Another limitation

71



www.manaraa.com

was our inability to quickly obtain the ablation profile for a single laser pulse. This

increased the cost of data acquisition, and limited us to only using inactive samples

(ie. already dead tissue). Live tissue is very active and would possibly inflame after

being laser cut, possibly changing the ablation profile before measurements could

be extracted using our methods. If this study is to be repeated on live specimen, it

is recommended that an automated measurement process be explored.

For the future, it is recommended that both a feedback system incorporating a

topography imager and a surgeon dependant optimization algorithm is investigated

and the thought process of laser surgeons during the initial phases of the procedures

are understood. It is also recommended to see how well these models perform when

trying to predict a multiple pulse laser cut and to see how well interrogation pulses

as little as 2 Watts can be used to predict the depth of a laser incision as high as

10 Watts.
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Appendix A

Lab Equipment

This Appendix shows information regarding the following critical components of the

experimental equipment:

• Franka Panda Robot

• FLIR A655sc Thermal Camera

• Leica CM 3050S Cryotome

A.1 CAD Models & Drawings
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ITEM NO. PART NUMBER QTY.
1 BA_J1_adapted 1

2 SH_J1J2_adapted 1

3 SH_J2J3_adapted 1

4 EL_J3J4_adapted 1

5 EL_J4J5_adapted 1

6 LA_J5J6_adapted 1

7 WR_J6_adapted 1

8 WR_J7_adapted 1

9 CLAMPING_PROTECTO
R_ELBOW_adapted 2

10
CLAMPING_PROTECTO
R_ELBOW_SMALL_ada
pted

2

11 ELBOW_PROTECTOR_a
dapted 2

12 LOWER_ARM_PROTECT
OR_adapted 1
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A.2 Specifications
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PANDA - DATASHEET 1

May 2019

© Copyright 2019 by Franka Emika

HARDWARE SOFT-ROBOT PERFORMANCE

ADD-ONS

Arm Motion

Force

Interaction

Degrees of freedom 7
Payload 3 kg

F/T Sensing link-side torque
sensors in all 7 axes

Maximum reach
Workspace

Joint velocity limits [°/s]

Cartesian velocity limits

Force range [N]
-125 − 95 -150 − 115

-70 − 70

Nominal case

Nominal case

Best case

Best case

-10 − 10

-100 − 100 -275 − 275

-16 − 12-10 − 10

-50 − 150 -115 − 155

-12 − 12-10 − 10

Torque range [Nm]

Fx

Mx

Fy

My

Fz

Mz

<+/- 0.1 mm (ISO 9283)
<+/- 1.25 mm

855 mm
see backside

Joint position limits [°] A1, A3, A5, A7: -166/166
A2: -101/101
A4: -176/-4
A6: -1/215

A1, A2, A3, A4: 150
A5, A6, A7: 180
up to 2 m/s end effector speed

Pose repeatabillity
Path deviation 3

Installation position upright
Mounting flange

Moving mass

Ambient 
temperature 2

DIN ISO 9409-1-A50

~ 12.8 kg

15 − 25 °C (typical)
5 − 45 °C (extended)

Interfaces ethernet (TCP/IP) for visual intuitive 
programming with Desk
input for external enabling device
input for external activation device 
or safeguard 
Control connector 
Connector for end-of-arm tooling

Sensing 3

Force resolution

Force repeatability

Torque resolution
Force noise (RMS)

<0.05 N

<0.15 N

<0.02 Nm
<0.035 N

Relative force accuracy 0.8 N

Safety retrofit option 
with safety-rated PLC 

Fully integrated 
end effectors

Fast mounting

Fieldbuses

Demonstration 
1kHz Franka Control
Interface

Research interface

PLd Cat. 3 
Safe torque off (STO)
Safe OSSD inputs

2-finger gripper
Vacuum gripper

Paw

Modbus/TCP, OPC UA, Profinet

Pop-up Box

Power consumption max. ~ 350 W
typical application ~ 60 W

Control

Air humidity 20 − 80 % non-condensing

Ambient 
temperature

15 − 25 °C (typical)
5 − 45 °C (extended)

Interfaces ethernet (TCP/IP) for internet 
and/or shop-floor connection
power connector IEC 60320-
C14 (V-Lock)
Arm connector

Controller size (19”) 355 x 483 x 89 mm (D x W x H)
Supply voltage 100 − 240 VAC

Weight ~ 7 kg

Power consumption ~ 80 W
Mains frequency

Protection rating

Active power factor
correction (PFC)

47 − 63 Hz

IP20

yes

Guiding force
Collision detection time

1 kHz Control 3

Minimum controllable force (Fz)
Force controller bandwidth (-3 dB)

0.05 N
10 Hz

~ 2 N
<2 ms

Adjustable translational stiffness

Monitored signals
0 − 300 Nm/rad
0 − 3000 N/m

Joint position, velocity, torque 
Cartesian position, velocity, force

Adjustable rotational stiffness

Nominal collision reaction time 3,4

Worst case collision reaction time 3
<50 ms
<100 ms

Weight ~ 17.8 kg

Protection rating IP30

Air humidity 20 − 80 % non-condensing

Relative torque accuracy 0.15 Nm
Torque repeatability <0.05 Nm
Torque noise (RMS) <0.005 Nm

Expected nominal lifetime 3,4 20,000 h

© Copyright 2019



www.manaraa.com

With its uncooled, high-resolution detector and cutting-edge 

functionality, the FLIR A655sc helps researchers and scientists 

accurately quantify thermal patterns, leakage, dissipation, and 

other heat related factors in equipment, products, and processes 

in real-time.

www.� ir.com/science

LW I R  S C I E N C E - G R A D E  C A M E R A

FLIR A655sc
TM

SUPERIOR IMAGE QUALITY & 
SENSITIVITY
Record crisp thermal images, even at high speeds

EASY, FLEXIBLE DATA 
COLLECTION
True plug and play connectivity simpli� es data monitoring 
and sharing

• Fast image transfer over GigE Vision, using low-cost 
standard cables up to 100 meters

• Integrate with FLIR ResearchIR or third-party software 
seamlessly over Gigabit Ethernet connections

• Control the camera with GenICam protocol support

• Produce clearly detailed 640 x 480 thermal images 
using the maintenance free vanadium oxide (VoX) 
microbolometer

• Detect temperature differences as small as 50 mK 

• Record 14-bit, full-frame data at up to 50 Hz, or 200 Hz 
with windowing

ADVANCED SOFTWARE 
COMPATIBILITY
Get more out of your data with advanced analysis tools

• Control and capture data directly intoFLIR ResearchIR 
Max or MathWorks® MATLAB

• Stream data directly to a PC running software for live 
viewing, recording, analysis, and sharing.

• Integrate with your proprietary software through 
optional Software Developers Kit (SDK)

Thermal quality control on domestic appliances.Motorcycle break testing.
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Power Connector: 2-pole jackable 
screw terminal

Allowed Voltage Range: 10-30 VDC
Gigabit Ethernet Port: RJ-45 connector, 

1000 MB

USB mini-B connector

Power indicatorHardware reset

Digital I/O Connector: 6-pole screw terminal
Digital Out: 2 outputs, opto-isolated 10-30 V supply, max 100 mA 

Digital In: 2 inputs, opto-isolated 10-30 V

System Overview FLIR A655sc

Detector Type Uncooled Microbolometer

Spectral Range 7.5 – 14.0 μm

Resolution 640 x 480

Detector Pitch 17 μm

NETD <30 mK

Imaging

Time Constant <8 ms

Frame Rate (Full Window) 50 Hz

Subwindow mode User-Selected, 640 x 240 or 640 x 120 (Gigabit Ethernet Only)

Maximum Frame Rate 
(@ Min. Window)

200 Hz (640 × 120)

Dynamic Range 16-bit

Digital Data Streaming Gigabit Ethernet (50/100/200 Hz) USB(25 Hz)

Command and Control Gigabit Ethernet, USB

Measurement

Standard 
Temperature Range

–40°C to 150°C (–40°F to 302°F) 
100°C to 650°C (212°F to 1,202°F)

Optional 
Temperature Range

Up to 2,000°C (3,632°F )

Accuracy ±2°C or ±2% of Reading

Optics

Camera f/# f/1.0

Available Lenses 6.5 mm (80°), 13.1 mm (45°), 24.6 mm (25°), 41.3 mm (15°), 88.9 mm (7°)

Focus Automatic or Manual (Motorized)

Close-up / Microscopes Close-up 25 μm, 50 μm, 100 μm

Image Presentation

Digital Data Via PC Using ResearchIR Software

I M A G I N G  S P E C I F I C A T I O N S

General 

Operating 
Temperature Range

-15°C to 50°C (572°F to 3,632°F)

Storage 
Temperature Range

-40°C to 70°C (-40°F to 158°F )

Encapsulation IP 30 (IEC 60529)

Bump / Vibration 25 g (IEC 60068-2-29) / 2 g (IEC 60068-2-6)

Power 12/24 VDC, 24 W Absolute Max.

Weight 0.9 kg (1.98 lb)

Size 216 × 73 × 75 mm (8.5 × 2.9 × 3.0 in)

Mounting ¼”-20 (on three sides), 2 x M4 (on three sides)

CORPORATE 
HEADQUARTERS
FLIR Systems, Inc.
27700 SW Parkway Ave.
Wilsonville, OR 97070
PH: +1 877.773.3547

SANTA BARBARA 
FLIR Systems, Inc.
6769 Hollister Ave.
Goleta, CA 93117
PH: +1 805.690.6600

Equipment described herein is subject to US export 
regulations and may require a license prior to export. 
Diversion contrary to US law is prohibited. Imagery for 
illustration purposes only. Speci� cations are subject to 
change without notice. ©2018 FLIR Systems, Inc. All 
rights reserved. 04/20/18

17-1683-INS-A655sc Datasheet

CANADA
FLIR Systems, Ltd.  
920 Sheldon Court 
Burlington, ON L7L 5K6 
Canada 
PH: +1 800.613.0507 

LATIN AMERICA
FLIR Systems Brasil
Av. Antonio Bardella,
320 Sorocaba, SP 18085-852 
Brasil 
PH: +55 15 3238 7080 

CHINA
FLIR Systems Co., Ltd
Rm 1613-16, Tower II
Grand Central Plaza
138 Shatin Rural Committee Rd.
Shatin, New Territories
Hong Kong
PH: +852 2792 8955955

EUROPE  
FLIR Systems, Inc.
Luxemburgstraat 2
2321 Meer
Belgium
PH: +32 (0) 3665 5100

www.� ir.com
NASDAQ: FLIR



www.manaraa.com

Home Histology Equipment Cryostats Leica CM3050 S

Leica CM3050 S Research Cryostat

Primarily designed for the demanding needs of cryosectioning in biomedical, neuro-anatomical and pharmaceutical research

The Leica CM3050 S cryostat features superior user comfort with excellent safety standards for practically all types
of cryosectioning applications.

It is the instrument of choice for all research applications and for advanced clinical cryosectioning needs.

Particularly when working with delicate specimens – for example brain samples in neuroscience – the precise specimen
orientation and the specimen feed system guarantees reproducible, thin, serial sections of maximum quality.

Select a configuration

Configuration 1 (14903050S01)

 VIEW CONFIGURATIONS

CONTACT USCONTACT US  for a quote.

SPECS

Quote Request
 +1 844 534 2262

Customer Support
 +1 844 534 2262

Technical Specifications

GENERAL

Width (with handwheel): 835 mm
Depth (cabinet only): 850 mm
Height: 1215 mm
Working height (armrest): 1025 mm
Weight (w/ motor and suct.): 193 kg
Operating temperature range: 18°C to 35°C
Maximum specimen size: 50 x 80 mm
Cutting speed: Slow: 0-50 strokes/min, Fast: 0-85

strokes/min, Vmax: 85-90
strokes/min

Section thickness setting 0.5 to 300 μm
Maximum specimen size 40 mm x 55 mm
Horizontal specimen feed 25 mm
Vertical specimen stroke 59 mm
Specimen retraction 50 pm

Specimen precision orientation by 8° (x/y/z axis)
Trimming 5 to 150 μm ± 0,5 μm in steps of 5,

10, 30, 50, 100 and 150 μm
Motorized coarse feed at two
speeds

500 μm/s and 1,000 μm/s
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Cutting speed ranges 0.1 mm/s to 170 mm/s, 0.1 mm/s to
100 mm/s, Vmax 210 mm/s

Temperature setting range 0°C to -40°C
Defrosting programmable 1 automatic defrost

cycle/24 h duration; from 6 to 12
min; manual defrosting

Freezing shelf temperature Approx. -43°C at an ambient
temperature of 22°C

Temperature setting range -10°C to -50°C (+/-3 K)
Dimensions (W x H x D) 882 x 1040 x 766 mm
Weight (including microtome) Approx. 180 kg
Power draw 1800 VA
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Appendix B

Other Methods Explored

Different methods were explored in regards to experimental goal, test-sample selec-

tion, and data-acquisition.

B.1 Experimental goal

The early conception of the experiment proposed involved taking the measurements

of laser cuts composed of multiple laser pulses. Initially, it was believed that a

mostly uniform laser cut could be created out of multiple pulses using the velocity

parameters suggested. But the images from the OCT test images revealed in a great

amount of detail that the cuts created with multiple pulses are extremely uneven

and spaced apart. It was due to this information that the focus on the experiment

shifted from a laser cut created from multiple pulses to a single pulse ablation profile.

B.2 Samples

Before the arrival of the new robot, different kinds of samples were explored by

manually laser cutting using different parameters, slicing, and making note on the
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quality of the image. To ensure the sample was still viable, the measurements taken

using microscopy were compared to previous data with the laser from Sam Moriartys

summer research work. 2.5 percent agar phantoms, 2.5 percent agar phantoms with

flour added for opacity, 3.5 percent agar and 5.5 percent gelatin phantoms, store

bought shitake mushrooms, and parsley. All samples were laser cut, sliced, and

imaged using the same microscope.

Figure B.1: cross sectional image of laser cut in 2.5 percent agar

2.5 percent agar phantoms [18], with and without flour for opacity, has been

used in preliminary work for this project and has substantial data associated with

robotic laser cutting with different settings that can be used to feed the algorithm.

These models were originally used to create a low cost agar ultrasound phantoms.

The problem encountered in recreating Sams test setup was the difficulty in slicing
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and imaging. The 2.5 percent agar gel had a higher chance of plastically deforming

during slicing, introducing error in the slicing and imaging process. The flour agar

sample appeared to be comparably more plastic when palpated. Slicing and imaging

lead to similar amounts of difficulty. Freezing samples lead them to shrivel and

change volume.

Figure B.2: Cross sectional image of 3.5 percent, 5 percent agar-gelatin phantoms

3.5 percent and 5.5 percent agar-gelatin phantoms, originally developed for

Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phan-

toms, had considerably more elasticity, but were as easy to pierce or shear [19].

Surface did not appear to deform during cutting, but walls of the slice seemed to

fragment and flake which introduced some noise in the image. The other issue

encountered by this phantom and gel phantoms in general is the change in charac-
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teristics of surface defects (such as cuts) when subjected to refrigeration, freezing,

or open air over a couple hours.

Figure B.3: Cross sectional image of Mushroom

Figure B.4: Image of mushroom showing different types of laser cut

Shitake mushroom slices were bought from the store and freshly laser cut. The

laser cuts already appeared cleaner and more defined upon initial inspection, and

the opacity of the mushroom made it a lot easier to identify the cut in a microscopic

image. The mushroom slices had a good elasticity that allowed for easier cutting
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and handling, and have a water composition similar to the 2.5 percent phantoms.

While the mushroom samples appear better and seem to be easier to extract useful

data on the shape of the cut, there didnt appear to be studies that use mushrooms

as a testing model representative of any soft tissue.

Parsley used was also store bought. Initially, the idea was to simulate a more hy-

dro dynamic test set up by cannulating and flowing warm saline through the parsley,

similar to an artery. While this idea would certainly improve the hydrodynamics of

the test set up, resecting a cancerous legion off of large vasculature that would not

cauterize effectively would be a more specialized technique and outside the current

scope for establishing the method. That being said, this set up can be revisited for

testing the limits for this kind of method for really difficult laser resections.

Figure B.5: cross sectional view of laser cut on the surface of parsley

B.3 Acquiring Depth measurements

A couple of methods were looked at for measuring depth accurately in-between

or during laser cuts but were ruled out upon further research and preliminary

tests/observation.
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Early on at the recommendation of Dr. Zhang, Dr. Fichera and I got in touch

with representatives at Santec, an OEM for OCT systems. OCT stands for Optical

Coherence Tomography and has been used to provide high resolution optical im-

ages and measurements of various tissue and materials. Santecs specific product of

interest was a minimally invasive approach to OCT scanning, particularly scanning

with a laser fiber within vascular structures. We were fortunate enough to get some

preliminary sample shipped to them and to have them image laser cuts that were

done manually, see figure below, but ultimately our lab alone couldnt afford procur-

ing their system and the time it would take to get a grant approved to acquire a

system of our own would take longer than the remaining time for my thesis.

Figure B.6: (Top) OCT Images from continuous wave laser cut on chicken breast

provided by Santec
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Figure B.7: OCT Images from Super Pulse laser cut on chicken breast provided by

Santec.

B.4 Experimental Protocol

Initially, an additional fixture was used to keep the top of the tissue flat while

allowing some exposure for the laser to interact with the tissue.

B.5 Modeling

Initially, when the experimental goal was centered on Laser cuts and not individual

pulses, different methods for modeling the shape of the cut were explored. Originally

Gaussian and quadranomial fits were explored to model the profile of a laser cut

using a minimal amount of data points to avoid a rigorous sectioning process. When

it became clear through the OCT images that these cuts were prone to unevenness

due to a lack of understanding of individual laser pulse depth dimensions, it became

clear that the focus was to shift towards modeling single pulses where a Gaussian

fit made more sense.
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Appendix C

Model building using separate

data series

Figure C.1: Model Trained with Group 25, validated with the remaining 45 points
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Figure C.2: Model Trained with Group 27, validated with the remaining 45 points

Figure C.3: Model Trained with Group 29, validated with the remaining 45 points
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Figure C.4: Model Trained with Group 31, validated with the remaining 45 points

Figure C.5: Model Trained with Group 33, validated with the remaining 45 points

91



www.manaraa.com

Below are the results of logarithmic models generated with a specific sample set

(25,27,29,30,31,33) using this equation:

D̂ = b1 ∗ ln(P ) + b0 (C.1)

and comparing the models generated with the rest of the data as validation data,

where D̂ is the estimated depth, P is the power level of the laser, b1 and b0 are

coefficients.

Fit Name SSE Rsq DFE RMSE (µm) V SSE V RMSE (µm)

25 v Rest 3.629e5 0.14 9 202 1.88e6 200

27 v Rest 2.348e5 0.75 10 153 3.24e6 268

29 v Rest 3.703e5 0.27 10 192 2.36e6 228

31 v Rest 1.869e5 0.70 10 136 2.02e6 212

33 v Rest 2.038e5 0.31 8 159 2.03e6 207

Below are the results of linear models generated with a specific sample set

(25,27,29,30,31,33) using this equation:

D̂ = b1 ∗ P + b0 (C.2)

and comparing the models generated with the rest of the data as validation data,

where D̂ is the estimated depth, P is the power level of the laser, b1 and b0 are

coefficients.
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Fit Name SSE Rsq DFE RMSE (µm) V SSE V RMSE (µm)

25 v Rest 3.627e5 0.13 9 202 1.92e6 204

27 v Rest 2.738e5 0.70 10 165 3.13e6 264

29 v Rest 3.778e5 0.26 10 194 2.41e6 231

31 v Rest 1.511e5 0.76 10 123 2.18e6 220

33 v Rest 2.234e5 0.25 8 167 2.10e6 211
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